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SUMMARY

A theoretical derivation for the effect of a towing-carriage mass
upon the general equations of motion is made for a prismatic body during
a bydrodynemic impact. The resulting equations include a correction
‘factor J +that depends on the trim and the ratio of the carriage mass
to the body mass. The equations can be used at any stage of the impact
to determine the resulting loads and motions of the body, including the
effect of a carriage mass.

Because of the camplexity of the equations for the completely gen-
eral case, it is necessary to choose exasmples to &id in showing the
conditions at which the cerriage mass is important. The examples chosen
are the V-bottom float with nonimmersed chines and the flat plate with
deeply immersed chines. For these examples the equations are analyzed
at particular stages of the impact, namely, at maximum acceleration and
at meximim penetration. At these stages indicative curves are plotted
for an infinite carriage mass in one case and with the carriage mass
neglected in another. The difference between the two curves shows the
meximim possible effect of the carrliage mass at the stages selected.

The curves indicate that for the V-bottom float with nonimmersed
chines the carriage-mass effect 1s more pronounced at high trims. At
low approach parameters and high trims, a carriage mass is found to heve
an effect on all the coefficients investigated. At the high approach
parameters and high trims, the effect of carriage mass on the vertical-
velocity ratio, acceleration, and pltching-moment coefficients is notice-~
able. At a2 trim of 15 and an approach parameter equal to or greater
than 1.0 (flight-path angle S 13°), the meximm percentage change in
any of the coefficients investigated at the particulsr stages selected
is about 10 percent or less because of carriage-mass effect.

The maximum percentage change in the maximum penetration and maximum
acceleration due to a carriege mass is of the same order for the V-bottam
float with nonimmersed chines and the flat plate with deeply immersed
chines at flight-path angles of 2. 5 , 5.5°, 10°, and 20° and trims of
15°, 30°, and 45° for beam loadings from 1 to 100.
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INTRODUCTION

Theories have been published regarding the loads and motions of
-prismatic bodies during hydrodynamic impacts for both immersed chines
and nonimmersed chines. For these theories, however, a free-body impact
is assumed, whereas for some experimental testing facilities a restraint
is imposed in the horizontal direction by a towing-carriage mass. There-
fore, questions have arisen concerning the importance of carriage-mass
effect upon the results obtained, since errors in the results might lead
to erroneous conclusions in testing programs.

The carriage mess is expected to have little effect for the low
trims, since at this condition the resisting weter force has only a small
component in the horizontal direction. However, for the higher trims,
at which some modern seaplanes may operate and at which tests may be
conducted, the effect is not known.

The purpose of the present investigation is to determine the effect
of carriage mass upon the general theoretical equations of motion for the
prismatic body during & hydrodynsmic impact and to indicate under what
conditions the effect is important. The derivations are analogous to
those of the free-body impascts of the references 1 to 4, the only differ-
ence being the inclusion of a factor that depends on carriage mass and
trim. General expressions appliceble to any prismatic body are obtained
for the loads and motions during impact, and curves are presented to aild
in showing the conditions at which the carriage-mass effect is important.

SYMBOLIS
a resultent acceleration
B Bobyleff's flow,coefficient
b beam of hull at chines
Cy, impact 1ift coefficient, i—:éH__§
§pgb2Vo
CaA beam-loading coefficient, M
pgb?
J carriage-mass correction factor

F resultant hydrodynemic force
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g acceleration due to gravity

G " corrected approach parameter, =& +.§ -

Ji three-dimensional mass parameter

k1 penetration parameter -

1 wetted length along keel

Ty two-dimensional water mass in transverse plane

M piltching moment, positive nose up

Q velocity parameter

8 distance from foremost immersed station along keel to flow
plane

t time after water contact

v velocity

W weight

X distance parallel to undisturbed water surface, positive in
direction of float motion

be horizontal velocity of float

X horizontal acceleration of float

Z immersion of keel at step normal to undisturbed water surfeace,
positive downward )

z vertical velocity of float

z vertical acceleration of float

B angle of dead rise

£(g) dead-rise function

7 flight-path angle

¢ distance from keel to undisturbed water surface in any given

flow plane, normal to keel, positive downward
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4 velocity of float normal to keel

E acceleration of float normal to keel

¢’ immersion of keel normal to itself into a flow plane, corrected
for water rise at keel

¢ partisl derivative.of {' with respect to time

6 angle between vertical and resultant acceleration

K approach parameter for free-body landing, g%%-;— cos(T-+ ”9

. o}

A ratio of length of keel below undisturbed watef surface to
mean beam

N ratio of length of keel below elevated water surface to mean
beam

p mass density of water

T trim angle

?(A) Pabst's aspect-ratio correction based on A

e(A') Pebst's aspect-ratio correction based on A’

@l(k) pitching-moment aspect-ratio correction

Subscripts:

a direction perpendicular to resultant acceleration

b float

c carriage

o at water contact

¥4 resultant velocity

s at step

b 4 horizontal direction

z vertical direction
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4 direction normal to keel
mex maximum

Generalized varisbles:

m generalized pitching moment

D generalized center-of-pressure distance
u generallged displacement

u' generalized velocity

u" generalized acceleration

o generalized time

THEORETICAL EQUATIONS OF MOTION

The case considered (shown in figs. 1(a) and (b)) consists of a
float of effective weight W, attached to a carriage of weight W,.
The float is free to move in the vertical direction, but it is constrained
in the horizontal direction because of the influence of the carriage
mass. The general equation of motion for the prismatic body during a
hydrodynemic impact on a smooth water surface is formulated on the basis
that flow occurs in transverse planes normal to the keel. The effects
of viscoslity, buoyancy, and changes In trim are neglected and a two-
dimensional treatment with a three-dimensional aspect-ratio correction
is mede. (See refs. 1 and 2.)

The force of a particular flow plane upon the body is equated to
its change of momentum with respect to time as follows:

"aFe = a%— (mwf,)ds (1)

where my 1is the two-dimensional water mass affected, ds is an incre-
mental distance along the wetted length, and € is the velocity of the
body normel to the keel. :

Including a three-dimensional aspect-ratio correction factor o(A')
and integrating equation (1) over the wetted length of the body yields
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A 1
_ . - amw ‘
—CP(7\><O Q?}rd5+§/; mwd.s> (2)

The first integral on the right-hand side of equation (2) represents

the part of the total force that can be associated with the planing of
the body (¢ = 0), and the second integral represents that part associated
with the acceleration of the virtual mass, where the virtuel mass 1s

usually defined as
1
[ e
0

At this point it 1s only necessary to substitute the proper expressions.
into equation (2) to get the equation including the carriage-mass effect.
For this purpose, the following relations are utilized:

Fp = |Fy” + B~
=F, sec T (3)
where
Py = - Hs_;_‘ib; ” (ha)
Fp= -2 ()

The acceleration X is positive in the direction of motion, end z is
positive downward (fig. 1).

The relation for the acceleration normal to the keel is glven as
follows:

E =XsinT+ Z cos T : (5)

Using equations (4) to determine the relation between horizontal and
vertical acceleration gives
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.o F
- 2 (6)
7 W +W, F,
If 6 is now defined as tan™L % and ten T 1is substituted for Fx/Fz’
equation (6) becomes
tan 8 = —B__ tan 1 (7)
+ W,

Equation (7) shows that the angle 6 remains a constant throughout the
impact and depends only on the trim and the ratio of the carriage mass
to the float mass. Equation (7) also shows that, when the carriage mass
‘equals zero (the free-body case), T =6 and the resultant acceleration
is then normal to the keel. If the carriage mass does not equal zero,
the resultant acceleration is not normal to the keel but at an angle 6
from the vértical (fig. 1).

Equations (3) and (4b) mey be cambined with equations (5) and (7)
to give '

‘ 4
Fg=—w:b 1 : zr (8)
cos®r 4+ —8incT
1+ de
W
Let
2 2
J = coser + ST (9)
1+ HQ
W
Then equation (8) becames
W b
F£=-§E (10)

Equation (10) may now be substituted into equation (2) to obtain

¥ i, . Nl
-%:Mx')(ﬁ ;gth—wds+§/; mwds> (11)




8 . NACA TN 3619

The two-dimensional mass my; for a given float is then assumed to
be a function of the penetration normal to the keel; that is,

my = £(¢") \ (12)

This function may be differentiated with respect to time to give

Ty o 3y A Sy g (13)

3 aL' ot L

1
Figure 1(b) shows that s = taﬁ =5 therefore,

as = 48" ‘ (1k)

tan T

Substituting equations (13) and (14) into equation (11) gives

BE_ oo )(j:n“ téﬁ}amwuf mwas> (15)

If the water rise at the keel is considered constant for the deeply
immersed chine and is neglected for the nonimmersed chine,

. L=t (16)

Substituting equation (16) into equation (15) gives

. Moy g2
-gg£=cp(7\')<f tm“ §f mwds) (17)

0

In order to solve equation (17) in terms of the vertical camponents
referred to the water surface, the followlng expressions are used:

§s = cog T . (18)
é Y%SZﬁg;: + 2(tan 6 sin T + cos T) (19)
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Equation (19) is obtained fram the equation
& =x8in T+ % cos T
if % 1s eliminated by use of the relation

Vg =Xxcos 8 - 2 sin ©

vhere V, 1s the constant velocity during impact. Equation (20) is
obtained from equations (5), (6), and (7).

Using equation (7) with (19) end (20), substituting into (17), and
integrating gives the following expression, which applies at any instant
of time:

‘ 1 '
. g, A V, sin 2
i1+ & ‘P(”)fo my ds| = - —Wb"iﬁ——T)‘(ﬁ Sl T) (21)

Rearranging equation (21) in integral form and using

T dz =42 a4z = 3 4z (22)
at

results in the followlng equation:

Z mWB

x z 4% Jf sin T ' 23)
52 %o (ﬁ N Vg sin T cos T) Wb Jk/n a5 (

J cos 0

Integration of equation (23) yields the following equation which expresses
the velocity as a function of the penetration:

s 2 ’I’S—
sin T
fa“gefw*zie-lfs'-'-f (@)
o 0 =607 jkjp n, ds

where

VgsinTcos T ¢ 41 .3

Jzg cos 6 - . 3
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The mass-correction factor j (eq. (9)) is plotted in figure 2 as a
variation of J with trim engle. The approach parsmeter k 1s defined

g%%-%- cos(T + 7,) and is plotted in figure 3 as a function of trim
o

angle and initial flight-path angle. Dividing equation (21) through
by 202 and rearranging relates the vertical velocity, acceleration,
and penetration as follows:

. 2
) jgmw,s-fl-+(9
—2Z_ = . 0
s 2 W, sin T U/‘l (25)
. =————+ J sinT my; ds
gp(N') 0

Equetions (24) and (25) are the general equations of motion for any
Impact including the effects of carrisge mass. These equations repre-
sent both bodies with the deeply immersed chine and the nonimmersed
chine, depending only on the choice of the variables substituted. These
equations are very similar to those derived In reference 2, the only
difference being the inclusion of the mass correctlon factor Jj. When

J =1, equations (24) and (25) are identical to those of reference 2.

Jmmersed Chine

The general equations of motion, equations (24) and (25) may repre-
sent the deeply immersed chine if the proper substitutions are made.
In this instance, let

+ G

Q1 = loge

| &%e
[op]
[op]

+
+ G z
Then equation (24) may be written as

J .6 gy
JF sin T (26)
my ds

chp(% f

Since fram equation (12) it is assumed that my g = £(t's), the integrals
mist be expressed in terms of g’ Therefore, the right-hand side of

equation (26) is multiplied by EETQ. Then, using the differential of
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E%%f?>’ as well as equation (14), and putting the result

in nondimensional form by multiplying by pb?/gb3 yields the following
equation:

equation (18)(dgB =

mys & o0's
'g/o Yo &Y
w=-/ S (21)
0 Ca ta? T +b/‘ s/ Ty,s 45 8
where Cp = —HQ—.
pg'b3
Similarly, equation (25) cen be written as
e 2 T, s
2 4 G) ————
Fo _ J('Zo pb= cos T (28)

: CA ten T E'q/b ¢
’ ) +fo ‘f%f“f

A time coefficlent giving the relationship between displacement and time
mey also be defined as

o
N

i Zb_'_tl
v50=f0 % (29)

(¢]

DNe

The following equations from reference 2 may be substituted into equa-
tions (27) and (28) for particular solutions:

For B = 09,

-1 4 0. >- (30a)

1 2
ws - 553 2(p) (500)
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T
For B> 0° and §B§-> 39%—53

P - glEn 57 352 - 229 (300
o

For equations (30), B 1is the angle of deed rise, f£(B) can be taken.
as %‘E - 1, and Bobyleff's flow coefficient B 1is obtained from fig-

ure It where it is plotted as a function of the angle of dead rise.

The aspect-ratio correction factor @(A') can be obtained fram
figure 5, which gives the variation of @(A') with A'. The quantity
A' is found fram the following equations (ref. 2):

For B = OO,
c!
)\' = .—S___ 1
b tan T (5 )
For g > 0° eand s _ s < tan B
B P b~ 2’
Al =__l__. 1b
ten T £(B) (510)
gl
For B > 0° and —B§-= £ > EEE—E,
2
-A' .= ' C'b (310)
tan T 28 __1
b he(p)
d
The ratio dcf is found from figure 6 for angles of dead rise less

s
than 10° and is taken as unity for larger angles of dead rise; the mass-
correction factor J 1is obtained from figure 2.

Equations (27) and (28) may be simplified further by assuming that
the acceleration of the virtual mass is negligible for the deeply immersed
chine. Then equation (27) reduces to

—- e —— &
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£ ¢

Q; = lo 2o
L €e T 1 G

t m‘W,S dgg gls
C'S/b JQQP(}\ ) Db2 dgls d b

= (32)
0 Ca tan T
and equation (28) becames
A 2my s
EET0N )(— + G) s
Zb _ 2() pb
5= - (33)
2o Ca 8in T

A method utilizing figures T to 9 1s presented in the appendix for
solving equations (32) and (33). Note that.the penetration parameter kj

(fig. 8) and the three-dimensional mass parameter Ji (fig. 9) are

different from the paremeters k and J of reference 2 because of the
inclusion of the carriage-msss correction factor Jj, except when J = 1.
The ratio of vertical penetration to beam may be easily found from the
following relation (ref. 2):

s 5
= -——--t—r— cos T
b B

gl []

It

1 A
K)T-sin'r (3’-{-)

where )\/7\' may be obtained from figure 6 for angles of dead rise less
than 10° and is taken as unity for larger angles of dead rise. This pro-~
cedure is also demonstrated in the appendix for the maximum penetretion.

Nonimmersed Chine

The equations of motion for the V-bottom float with nonimmersed
chines can likewise be obtained from equations (24) and (25) to get the
respective velocity and acceleration reletionships. In this case, the
effect of water rise at the keel is neglected. Furthermore, the function
for the two-dimensional water mass can be written simply as

2
me = [208)] 2 P (35)
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where f(B) is a constant depending on the dead rise of the float and

is sometimes taken as gﬁ - 1. (See refs. 1 and 2.)

Then, since ds = d{/ten v and g, = z/cos T,
L % 2 o 2
‘/:)deE;:fO HOI S tan 7 ° O°
ot 2
B 6 tan T E(BH §s3 (36)

Substituting equation (36) into (24) and simplifying yields the following
result: '

2z 2pr 2
l]_og éO+G+ G - G =-fgs E‘(Bj_-l —2‘§d§
P N T 0 W tan T Jex[£(B)]?
Zo +
gp(A) 6
(37)

After integration and rearrangement, equation (37) may be written

6 G .. Zaig 2 3]
:2-.20_+G % + E . gio(n) [£(8)] Dﬂzgl

1L+G 6Wp sin T cosa-rj
Bee,
— %o agiz
1+ G <l+ Wo ) (38)

Where

e [Ee)]
6 sin T coseT
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Thus, equation (38) beccmes

. G ___G
.2 40 2 1+G
a‘ngaJéo-}- ZO+G
l+W‘b T © -1=0 (39)

Similerly, equation (25) may be written

(o]
= - (4o0)
202 14 agiz)
W

Equations (39) and (40) are the equations of motion for the V-bottaom
float with nonimmersed chines. Equation (39) relates the velocity and pen-
etration and equation (40) relates acceleration, velocity, and penetration.

When equations (39) and (40) are put in a generalized form similar
to that of reference 1, the following expressions result:

(a) Generalized displacement

_ (ag\M/?
) 0
. 1/3
: (}(?iii'-%§:%57§) 1/3
== ° -1 (41)

l+G e
I s a
2o
(b) Generalized acceleration
/3 ..
u" = z
@ =

/3
: - —" s o/l _ 1
w/3( 70 \gre £+0 (Fae WO
= 33 %;4-9‘ T+a © o 1-

1/5) 2\Y2

(k2)

e e — e e e e e < h e e
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VPG of

'L'l." Zo (’-l-})
1+ ;]1.13
(c) Generalized time
u . i/é . ‘
Y N Y 1)
0 2 1 u Zo
(d) Generalized pitching moment
m =M ®(A) sin T cos T
s 2
Zo CP]_()\) i’y
g
2
[2(8)] “eno (Mg [39:#* % 2 3
= + (,j—— + jG) z
6 sin T coszﬂv}b l&ioz Zo
3 ook

where cpl()\) is the pitching-moment aspect-ratio correction and is some-
times taken as @(A). (See ref. 1.) .

(e) Generalized center-of-pressure distance

b= - 13_1(1 N f) (46)

RESULTS AND DISCUSSION

The general equations of motion (egs. (24t) and (25)) are appliceble
to any prismatic body. However, because of the nature of the general
equations, the determination of the carriage-mass effect for the completely
general case cannot be shown; thus the enalysis is limited to more spe-
cific cases. For this reason, two examples - the deeply immersed chine
and the nonimmersed chine -~ are treated separately. For the immersed
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chine the flat plate is selected as the configuration, whereas for the
nonimmersed chine the V-bottom float(is given a generalized treatment.’

The generasl approach is to plot some of the important parameters
with carrliage mass varied in order to show its effect. For simplicity,
the two end conditions are chosen, namely, the condition for zero car-
riage mass and the condition for an infinite carriage mass. The differ-
ence between these two conditions represents the maximum effect of a
carriage mass. ’

Figure 2 shows the variation of the mass correction factor J with
the trim for various ratios of carriasge mess to float mess. These curves
indicate trim angles and mass retios that approach the conditions for
zero or infinite carriage mass. The carriasge-mass effect upon the cor-
rection factor is more important at high trims and the mass ratios of
magnitude 10 are found to approach that of the Infinite carriage mass.
At the low trims the effect of e carriage mass is small since the mass
correction factor approaches 1.0, the free-body case.

Nonimmersed Chine

The nonimmersed chine i1s discussed first because & more general
solution is possible in this case, and it 1s believed that maximm per-
centage corrections for the various parameters due to a carriage mass
which apply to the nonimmersed chine can also be applied to the immersed
chine as a first approximation.

For the V-bottom float with the nonimmersed chine the equations of
motlon are put in the generalized form of reference 1. The generalized
coefficients given by equations (41) to (46) are then plotted in fig-
ure 10 for zero and infinite carriage masses &t maximum acceleration
and maximum penetration to give some indication of carrisge-mass effect.
The vertical-veloclty ratio is given a similar treatment and is plotted
et maximum acceleration and rebound. (See fig. 10(b).) The curves for
the zero carriage mass are. taken from reference 1.

The curves indicate that the maximum carriage-mass effect varies
with the trim and the approach parameter. At low trims there is little
carriage effect, inasmuch as the carriage mass imposes inertia only in
the horizontal direction and &t low trims there is little water reaction
in this direction. At high trims and low approach parsmeters (high flight-
path sngles), all the coefficients are affected by carriage mass; whereas
for high trims and high approach parsmeters (low flight-path angles), only
the vertical-velocity ratio, acceleration, and pitchingamament coefficlents
are noticeagbly affected. .

Figure 3 shows that at the low epproach perameters (k< 1) and high
trims (T 2 15°) the flight-path angles are larger than those usually
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expected with the modern seaplane. However, in certain instances, such
as impacts subsequent to the initial seaplane impact, very high flight-
peth angles may occur. Also, although the low range of approach param-
eter may be out of the normal operating range of the seaplane, it still
has significance as far as testing programs are concerned. This situ-
ation exists since testing programs are conducted over an entire range
of variables if possible; therefore tests including the low range of
approach parameters could lead to erroneocus conclusions if the carriage-
mass effect is not _considered. Finally, some new or unusual configura-
tions such as certain types of hydro-skis may be normally operated in
the low range of approach parameters.

It is also deemed important to give an idea of carriage-mass effect
in the more usual ranges of flight paths and trims. At trims up to and
including 15° and approach parsameters larger than unity, there is about
10 percent or less correction to any of the coefficients plotted. (See
fig. 10.) More specifically, at a trim of 150 and a flight-path angle
of 5.5° (k = 2.4) the maximum percentage changes in same of the general-
ized coefficients are as follows: <1.5 in maximm displacement, 2 in
displacement at maximum acceleration, -8 in velocity at meximum acceler-
ation, -6 in velocity at rebound, 2 in msximm acceleration, 6 in accel-
eration at maximum penetration, 4 in pitching-moment at meximm penetra-
tion, and 2.5 in pitching-moment at meximim acceleration. The changes
in center of pressure and time are small at either meximum acceleration
or maximum penetration. This specific case shows that some of the vari-
ables are changed much less than the 10 percent maximum quoted previously.

From figure 10 it is possible to observe how a cerriasge mass influ-
ences the various perameters during en impact. The maximum penetration
and time to reach maximum penetration are decreased, and the acceleration
at meximum penetration is. increassed. The meximum acceleration, time to
reach maximum acceleration, and displacement at maximm acceleration are
increased, but the vertical velocity at meximum acceleration is decreased.
Carriage effect also decreases the rebound velocity (increases in the
negative direction, fig. 10(b)) which has an important effect on subse-
quent impacts. The pitching moment is increased at both maximm accel-
eration and maximum penetration, whereas the center-of-pressure distance
is increased at meximum accelerastion and decreased at meximum penetration.

IJmmersed Chine

For the immersed chine, the exact solution for the equations of
motion are laborious, and as a simplification the acceleration of the
virtual mass is considered negligible. According to reference 2, this
simplification does not seriously reduce the accuracy of the solutions
for practical landing configurations if the beam loading 1s greater
than 1.0 and the chines are apprecigbly immersed. Under the foregoing
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assumption, the equations of motion (egs. (24) and (25)) reduce to equa-
tions (32) and (33). A method by which equations (32) and (33) can be
solved 1s presented in the appendix.

As an example for the immersed chine, a flat plate 1s assumed as
the impacting body end the equations of motion are solved by use of the
method presented in the appendix for both the infinite carriage mass and
the zero carriage mass. The solution is made at maximum penetration and
maximum acceleration and curves are presented at these conditions.

Figure 11 shows the variation of the maximum penetration with various
initial conditions for both zero and infinite carriage masses. Figure 12
shows the variation of the maximum impact 1ift coefficlent against the
seme paremeters. These curves indicate, like those for the V-bottom flosat
with nonimmersed chines, that the mass effect is more pronounced at high
trims and high flight-path angles (low approach parameters). In addi-
tion, figure 11 shows a slight effect of maximum penetration with beam
at a flight-path angle of 5.5°. However, this effect is not noted in
general and may be due to computational or procedural errors.

For the flat plate with immersed chines and the V-bottom float with
nonimmersed chines, the maximum percentage change in maximm penetration
and maximum acceleration due to a carriage mass are of the same order
for comparable trim and flight-path conditions. This comparison was
made for trims of 15°, 30°, and 45° and flight-path angles of 2.5°, 5.5°,
10° and 20°. For instence, the maximum chenge in maximum penetration
at a flight-path angle of 20° and trims of 159, 309, and 45° is about -5,
-9, and -14 percent, respectively, for the nonimmersed chine and is about
-4, -7, and -13 percent for the immersed chine. The maximum change in
maximum acceleration is about 2, 9, and 21 percent for the nonimmersed
chine and about 2, 9, and 23 percent for the Ilmmersed chine. The percent-
age corrections for the immersed chine are averaged over the beam-loading
ranﬁe, although there was little variation throughout the range from 1
to 100. .

From calculations of vertical-velocity ratio for the immersed chine
the same conclusion was arrived at for the velocity at meximum acceleration,
namely, that the meximm percentage correction due to carriage effect was
about the same for the flat plate with immersed chines and the V-bottom
float with nonimmersed chines. It might be expected that for the other
variebles the maximum percentage corrections at meximum acceleration and
nmaximum penetration is of the same order also, although this has not been
proved.
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CONCILUDING REMARKS

A method has been derived for theoretically including the effect

of & carriage mass in the equations of motion for any impacting prismatic
body. The equations are solved for the V-bottom float with nonimmersed
~chines and the flat plate with deeply jmmersed chines. The meximum

effect of carrisge mass upon the loads and motions of the nonimmersed
chine at meximum penetration and meximm acceleration varies with trim
and, flight-path angle. At low trims the effect of a carriage mess is
small. At high flight-path angles and high trims (low approach param-
eter), carriage mass has an effect on all the varisbles plotted; whereas
at high trims and low flight-path angles (high approach parameter) , car-
risge mass has an effect upon the velocity ratio, acceleration, and
pitching moment only.

For the more usual -seaplane-design conditions, that is, approach
parameters lerger than 1.0 and trims up to 15°, the meximum percentage
correction for any of the coefficients at the conditions presented is
gbout 10 percent or less.

For the V-bottom float with nonimmersed chines at the condition of
maximum penetration, a carriage mass tends to decrease maximum displace-
ment, time to reach meximmm penetration, and center-of-pressure distance,
whereas it tends to increase the acceleration and pitching moment. At
meximum acceleration, carriage mass ihcreases the displacement, acceler-
ation, time to reach meximum acceleration, pitching moment, and center-
of-pressure distance, whereas it decreases the vertical velocity. The
vertical velocity at rebound is also decreased (increased in theé nega~
tive direction).

The maximum percentage change in maximum penetration and maximum
acceleration due to carriage effect is of the same order for both the
V-bottom float with nonimmersed chines and the flat plate with deeply
jmmersed chines at flight-path angles of 2.5°, 5.5°, 10°, and 20° and
trims of 159, 30°, and 45° for beam loedings from 1 to 100.

Langley Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., November L7, 1955.
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APPENDIX
COMPUTATTIONAL PROCEDURES

The simplified methods for computing same impact parameters for the
deeply immersed chines are presented. These methods, including effect of
carriage mass, are based on a solution of the equations of motion (eas. (32)
and (33)), which have the following restrictions: the acceleration of
the virtual mass, the effect of flight-path angle on water rise at the
keel, and the effect of flight-path angle on the rate of change of water
rise at the keel are neglected. The result of these omissions 1s con-
sldered small at beam loadings larger than vnity. Applicability is also
restricted to impacts for which the leading edge of the surface is not
immersed. The procedures are similar to the method presented in refer-
ence 2, appendix B, procedure 1.

Procedure I
The steps for obtaining meximum penetration «Z/bmax are as follows:
z -
(1) Set i 0.

kK + 1 -3

(2) Obtain G = 3

, Where- k can be obtained from figure 3
and J Zfram figure 2.

(3) Use G emnd 2/50 to obtain @Q; from figure T.

CaQ1

(4) With Q;, Cp, snd T, calculate k; = - 12

y Where Cp =

pgb3’
(5) With k;, 7, end B, obtain g's/b from figure 8.
(6) From

= £%§-§%; cos T

| o'm

= A' %% sin T

ey e e e e et et s e e e
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obtain z/bpgy where A/A' is taken from figure 6 for B < 10°. TFor
lerger values of B, the ratio A/A' is taken as unity.

Procedure II
The impeact 1ift coefficient at maximum load Clmax may be compu‘l;ed
in the following manner:

(1) Compute value of G = K—i'%'l, where & can be obtained from
figure 3 and J from figure 2. '

(2) Select several values of vertical-velocity ratio 2/20 between
"1 end -1 end, with the value of G, obtain a value of Q; from figure 7

for each value of 2/%g.

(3) Compute a value of k, for each value of Q7 from the equation
1 1

CAQ Wy ,
A~ -

ki = where Cap = .

1 ) AT T3
32 pgb

(%) Obtain values of the ratio of normal penetration to beam t' 5 /b
for each value of kl from figure 8 with use of appropriate values of

T and B.

(5) Obtein value of J) from figure 9 for each value of {'gfb
by use of appropriate values of T end 8.

(6) Calculate the value of the acceleration ratio 'z'b/ 2,2 for each
value of 3%/%o and {'g b through substitution into

21

Zb_ _ _32(17; + G) Gr

. 2 7,
Zo o

(7) Find the values at which zb ioe is maximm, and then campute

CL =9 sin27032(-£z—o- + G)J]_
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Additional Procedures

Variations of procedures I and IT may be used to give additional
information. For instance, if the vertical-velocity ratio i/ﬁo is set
equal to zero and the steps of procedure II are followed, the load at
maximum penetration can be found. The penetration at maximum load can
be obtained by utilization of the ratio {';/b &t meximum load in con-

junction with equation (34) which is presented in step (6), procedure I.
In order to obtain the variation of time with penetration equation (29).
must be elther graphically or numerically integrated.
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